
DYMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs

Zhenhailong Wang1*, Senthil Purushwalkam2*, Caiming Xiong2, Silvio Savarese2,
Heng Ji1, Ran Xu2

1University of Illinois Urbana-Champaign, 2Salesforce Research
*Equal Contribution

Figure 1. Dynamic Merging and Virtual Unmerging (DyMU) adaptively reduces visual token lengths based on image complexity, as
shown on the left where simpler images are represented using fewer tokens. In contrast, existing representations (like CLIP) always use
the same number of tokens regardless of image content. DyMU applied to recent VLMs (right) maintains competitive performance across
different token compression levels. This training-free approach preserves key semantic information, offering a more efficient plug-and-play
alternative to VLMs with fixed-length visual tokens.

Abstract

We present DYMU, an efficient, training-free frame-
work that dynamically reduces the computational burden
of vision-language models (VLMs) while maintaining high
task performance. Our approach comprises two key com-
ponents. First, Dynamic Token Merging (DToMe) reduces
the number of visual token embeddings by merging similar
tokens based on image complexity, addressing the inherent
inefficiency of fixed-length outputs in vision transformers.
Second, Virtual Token Unmerging (VTU) simulates the ex-
pected token sequence for large language models (LLMs)
by efficiently reconstructing the attention dynamics of a
full sequence, thus preserving the downstream performance
without additional fine-tuning. Unlike previous approaches,
our method dynamically adapts token compression to the
content of the image and operates completely training-
free, making it readily applicable to most state-of-the-art
VLM architectures. Extensive experiments on image and
video understanding tasks, demonstrate that DYMU can
reduce the average visual token count by 32%-85% while
achieving comparable performance to full-length models,
across diverse VLM architectures, including the recently

popularized AnyRes-based visual encoders. Furthermore,
through qualitative analyses we demonstrate that DToMe
effectively adapts token reduction based on image com-
plexity, and unlike existing systems, provides users more
control over computational costs. Project page: https:
//mikewangwzhl.github.io/dymu.

1. Introduction

Recent large vision-language models (VLMs) have demon-
strated breakthroughs in computer vision tasks such as im-
age captioning [6], open-vocabulary object detection [13],
visual-question answering [12] and OCR [31] by lever-
aging the reasoning capabilities of large language models
(LLMs) to enhance visual understanding. Most state-of-
the-art Vision-Language Models (VLMs) follow a common
approach: a visual encoder extracts features from images
or videos and projects them into the same embedding space
as textual features. These visual embeddings are then pro-
cessed by LLMs alongside textual query features, enabling
complex understanding and reasoning tasks while directly
benefiting from advancements in LLM capabilities.

As expected, the quality of the final predictions from the

https://mikewangwzhl.github.io/dymu
https://mikewangwzhl.github.io/dymu

LLM relies heavily on the richness of the visual features
and the amount of semantic detail captured by the encoder.
Consequently, research has focused on improving visual en-
coders to extract increasingly fine-grained features, leading
to architectures that can capture intricate details. However,
this level of detail comes at a cost — the computational bur-
den during training and inference.

To process high-resolution images while preserving fine-
grained details, modern visual encoders generate a large
number of tokenized representations. Furthermore, state-
of-the-art VLMs like LLaVA-OneVision [19] and Qwen-
2.5VL [2] use vision transformers (ViTs) that scale the
number of tokens with the resolution of the image or num-
ber of frames in videos. For example, the visual encoder in
LLaVA-OneVision would produce 9477 tokens for an im-
age of 1280×960 resolution. In contrast, the number of
tokens in the textual queries for vision tasks is relatively
low. On common benchmarks that represent real world use
cases, textual queries often consist of just a few tokens, e.g.,
∼24 on MME [11]. This stark contrast highlights that the
computational burden of processing vision tasks generally
arises primarily from the large number of visual tokens.

We first make an interesting observation: in current vi-
sual encoders, the number of tokens generated for an image
does not depend on the content of the image. In Figure 1,
we illustrate this with some examples — a CLIP [33] rep-
resentation leads to the same embedding size on a blank
image with a small circle and on a complex scene depict-
ing buildings, vehicles and people. In contrast, textual to-
kens are more closely tied to the amount of content con-
veyed — more words are required to describe more infor-
mation. An average sentence length in English is around
15–20 words [10], meaning that regardless of the content of
the image, the language model in LLaVA-OneVision [19]
has to process the equivalent of 400-500 sentences for each
high-resolution image.

In this work, we propose Dynamic Merging and Vir-
tual Unmerging (DYMU), which comprises two key meth-
ods for modifying existing pre-trained Vision-Language
Models (VLMs). First, we introduce Dynamic Token Merg-
ing (Sec 3.1), which allows the visual encoder to generate
variable-length token sequences based on the complexity
of the image. Second, we present Virtual Token Unmerg-
ing (Sec 3.2), enabling the LLM decoder to process shorter
dynamic visual token sequences while efficiently approxi-
mating the full-length sequence. Crucially, we demonstrate
that both of these modifications do not require additional
fine-tuning of the pre-trained VLM. Furthermore, Dynamic
Token Merging is compatible with any Vision Transformer
(ViT)-based visual encoder, and Virtual Token Unmerging
can be applied to any LLM that utilizes Rotary Position Em-
bedding (RoPE) [36].

We show that VLMs modified with our methods can

maintain the performance of the full model while reduc-
ing the average token count by 32%-85% (see Sec 4.2). In
addition to improving efficiency, our approach offers users
greater control over token costs compared to existing sys-
tems (e.g., GPT-4o), which incur a fixed token count per
image based solely on resolution. In Sec 4.3, we demon-
strate example applications on how the number of visual
tokens can be further reduced by combining DYMU with
pre-processing tools such as background removal, object
detection, etc. Through comprehensive quantitative exper-
iments (Sec 4.2), we verify that our method works effec-
tively across different VLM architectures, with varying pre-
training strategies, visual encoders, and training datasets.

2. Related Work

Component
Improved

Dynamic
Length

No Addn.
Modules

Training
Free

Granularity
Control

Extra
Cond.

LLaMA-VID [22] Projector None
Fast-V [22] Decoder None
SparseVLM [22] Decoder Text
MQT-LLaVA [14] Projector None
LLaVA-Prumerge [34] Projector None
TokenPacker [34] Projector None
ATP-LLaVA [34] Decoder Text
LLaVA-mini [45] Projector None

DYMU Encoder &
Decoder None

Efficient Vision-Language Models Recent efforts in
large vision-language models (VLMs) have primarily fo-
cused on reducing computational overhead during the pre-
filling and VLM decoding phases. That is, given a full
sequence of visual tokens from a visual encoder, such as
CLIP, these approaches perform token pruning and merg-
ing [5, 15, 23, 34, 38, 40, 46], distillation [41], or resam-
pling [14, 20, 22, 45] to improve efficiency in either the
projectors or the VLM decoder blocks. However, we iden-
tify several key limitations: (1) Most existing methods, in-
cluding all training-free approaches [5, 38, 46] predefine a
fixed compression ratio for any input image regardless of its
complexity. While [40] proposed an adaptive token pruning
framework that enables variable-length compression, it re-
quires retraining the backbone VLM with additional mod-
ules. Such training can be costly or infeasible as main-
stream VLMs rarely open-source their full training recipe
and data. (2) All existing methods retain a frozen, fixed-
length visual encoder, overlooking the potential for further
efficiency improvements within the visual encoder itself. In
this work, we aim to explore a simple training-free algo-
rithm for variable length visual token compression, which
can be directly applied to cutting-edge VLM architectures
including Any-Resolution models and RoPE embeddings.

Efficient Vision Transformers We also draw inspiration
from a separate line of research [3, 26, 29, 37, 42] aimed
at improving the efficiency of Vision Transformers (ViTs)

themselves, which is still the main go-to architecture for vi-
sual encoders [32, 33, 44]. In particular, ToMe [3] merges
a predefined number of tokens within each ViT block us-
ing bipartite soft matching. However, the effectiveness of
such methods in coordination with VLM backbones re-
mains largely unexplored. Our experiments in §4 show
that naively applying ToMe to visual encoders in pretrained
VLMs results in a significant drop in performance. To ad-
dress this issue, we further propose an efficient “virtual
unmerging” algorithm to boost the performance of VLMs
without training with the modified encoders that output re-
duced token numbers.

3. Method
In this section, we present the main technical details of pro-
posed method. In Section 3.1, we present our proposed Dy-
namic Token Merging (DToMe) — a training-free method
to dynamically reduce the number of output tokens by vi-
sual encoders based on the complexity of the image con-
tent. In Section 3.2, we introduce Virtual Token Unmerging
(VTU) — an approach to process the reduced visual tokens
through the language model while efficiently simulating the
standard number of visual tokens. This method utilizes the
tracked positions of the redundant tokens to recreate a full
attention matrix of the original length.

The combination of both methods is referred to as
DYMU, short for Dynamic Merging and Virtual Unmerg-
ing. We illustrate the core idea in Figure 2. DYMU can be
applied to any VLM that uses transformer-based visual en-
coders and RoPE-based transformer language models. The
proposed modifications to the architecture do not introduce
any additional learnable parameters and most importantly,
do not require any additional fine-tuning of the VLM.

3.1. Dynamic Token Merging (DToMe)
Most recent large vision-language models (VLMs) use vi-
sion transformers (ViTs) like CLIP [33] or SigLIP [44] to
encode images into a sequence of visual tokens. For a fixed
resolution input image, the ViT architecture always outputs
the same number of token embeddings, leading to low ef-
ficiency in VLMs. Our approach draws inspiration from
ToMe[3], a prior work which reduces the number of output
tokens to a predefined fixed number. However, predefin-
ing the reduction ratio can still lead to a misalignment be-
tween the information of an image and the number of tokens
needed for representing it.

Here we propose Dynamic Token Merging (DToMe), an
extension of ToMe that adaptively merges similar tokens in
ViT layers, ensuring the output token count aligns with im-
age complexity. DToMe merges tokens based on a similar-
ity threshold while maintaining a record of merged tokens to
ensure their influence is properly propagated through subse-
quent transformer layers. To find the thresholds, we pro-

pose a inference-only batch-level bipartite merging algo-
rithm which leverages the natural variance of image com-
plexity in randomly sampled images.

Identifying Redundant Tokens Let us represent the out-
put of the self-attention layer in the ViT layer i as xi ∈
RNi×D, where Ni is the sequence length* and D is the em-
bedding dimension. Similarly, let the keys computed in the
self-attention layer be represented by ki ∈ RNi×Dk . In
each transformer block, we apply an additional DToMe op-
erator to xi. Drawing inspiration from [3], we follow a bi-
partite soft matching strategy to identify which tokens need
to be merged. First, we divide the Ni tokens into two sets
(say A and B) by assigning alternating tokens in sequence
them. We then compute a bipartite assignment between
the two sets of tokens by assigning token t ∈ A to tB =
argmax

n∈B
(ki[t]

T ki[n]) (token with the most similar key).

This gives us |A| edges with scores Si[t] = (ki[t]
T ki[tB])

for t ∈ A. We then apply a threshold τi to retain edges
t −→ tB where Si[t] > τi. Unlike [3], this thresholding
operation leads to a variable number of retained edges de-
pending on the amount of redundancy demonstrated in the
key embeddings ki. We describe our approach for comput-
ing the thresholds below.

Tracking and Merging Tokens For each token in the
sequence, xi[t], we also track the set of positions of the
tokens that have already been merged into it. Pi[t] ⊂
{1, 2, . . . , N1}. For each of the edges between chosen re-
dundant tokens t −→ tB , we compute merged token embed-
dings and the corresponding position sets as:

xi[tB]←−
xi[t] · |Pi[t]|+ xi[tB] · |Pi[tB]|

|Pi[t]|+ |Pi[tB]|
(1)

Pi[tB]←− Pi[tB] ∪Pi[t] (2)

Pi[t]←− ∅ (3)

Intuitively, the representation of token tB is updated to the
average of xi[tB] and xi[t], weighted by their corresponding
merged position set sizes, Pi[tB] and Pi[t]. The token t
is then dropped since it has been merged with tB , thereby
reducing the token count in the next layer.

Finding Redundancy Thresholds The layer-wise
thresholds τi play a crucial role in determining how many
tokens are merged. In order to determine the thresholds,
we rely of statistics from a large dataset of images. First,
we choose a hyper-parameter ri for each layer i which
represents the number of edges we expect to merge in a
layer on average across images of all complexities. The
final output would then be expected to have an average of
N −

∑
ri tokens. Using a dataset of images, we collect

large batches of size B which are used to perform forward
computation through the layers of the ViT sequentially.

*For standard ViT without any merging, Ni is constant across layers

Figure 2. Method Overview. DYMU, is composed of two key ideas: Dynamic Token Merging (DToMe) and Virtual Token Unmerging
(VTU). DToMe first determines per-layer thresholds (left) by feeding a large batch of images into the vision transformer and computing
bipartite token similarities. We rank these edges across the entire batch and choose the top-Br (r = desired average number of tokens,
batch size B). This leads to more edges from simpler images (with more redundancy) being chosen, while complex images remain less
merged. During inference, DToMe merges tokens on a per-image basis using these pre-computed thresholds. We then apply VTU (right)
in the self-attention layers of the pretrained VLM to efficiently expand the attention matrices to the standard token count—ensuring the
model’s original weights and outputs remain compatible—before re-merging the tokens for the next layer. The overall process is training-
free and utilizes crucial image information by allocating the token budget more effectively for both simple and complex images.

For each layer, we compute the B bipartite matching
token edge score maps S(b)[t] where b ∈ {1, 2, . . . , B} as
previously described. We then find the threshold τi as:

τi = max

τ |
B∑

b=1

∑
t∈A(b)

I
(
S(b)[t] > τ

)
= B ∗ ri

 (4)

In words, this finds the largest threshold such that B ∗ ri
tokens are merged across the batch of images. It is impor-
tant to note that the number of tokens merged in each image
will not necessarily be equal to ri but the average number
of tokens merged per image will be ri. Intuitively, since the
ranking of edges is over the entire batch, simpler images
that have more redundant tokens will be merged more. This
process is done sequentially for each layer while only pass-
ing the remaining tokens to the next layer to obtain thresh-
olds for every layer. We then average the layer-wise thresh-
olds across several batches to ensure that they reflect the
statistics across a diverse set of images. See Figure 2 (left)
for an illustration of the proposed batch-level threshold find-
ing.

Size Weighted Self-attention To ensure that the self-
attention layers weigh each token based on the number of
tokens that were previously merged into it, we adopt the
idea of size-weighted self-attention from ToME[3] where
the attention is computed as:

A = Softmax

QKT

√
d

+ log

 |Pi[1]|
...

|Pi[Ni]|

 (5)

3.2. Virtual Token Unmerging (VTU)

The language model (LLM) in a pre-trained VLM is trained
to operate on a fixed number of embeddings for each im-
age†. When Dynamic Token Merging is applied to a visual
encoder, this disrupts the optimized VLM and leads to a
significant drop in performance (see Sec 4). In this section,
we present an approach to circumvent this issue while still
benefiting from processing fewer number of visual embed-
dings. Our proposed approach, Virtual Token Unmerging
(VTU), can be easily applied to any mainstream LLM that
uses a RoPE [36]-based transformer architecture.

Consider the general case of a sequence of N embed-
dings e ∈ RN×D of which only Nun << N rows are
unique. Let eun ∈ RNun×D be the unique embeddings and
M ∈ {0, 1}N×Nun be a mapping such that e = M eun. Here
M is a sparse matrix with one-hot rows‡. We now ask the
question — for various operators f in an LLM, can we ap-
proximate f(e) using some efficient function of eun and M?

Sequence-independent Operators For any operator f
that processes each sequence location independently, we
can express f(e) as f(e) = M f(eun) by definition. This
means that we only need to apply f to the unique embed-
dings eun, significantly reducing computational cost while
preserving the original outputs. Many key components
of modern LLMs fall into this category, including Lin-
ear layers, Activation functions (ReLU, GeLU, etc.), and

†AnyRes[19] leads to multiple fixed length embeddings
‡Note that due to the sparsity of M , the time complexity of multiply-

ing MD,DM,MTD,DMT are all O(NK) if D is a dense matrix with
dimensions N ×K or K ×M .

Layer Normalization (along the embedding dimension D).
The overall complexity of the MLP layers is reduced from
O(ND2) to O(NunD

2), resulting in a linear speedup with
Nun << N .

Virtual Unmerging for Self-Attention with RoPE
A common layer in recent LLMs is the Self-Attention
operation with Rotary Position Embedding (RoPE). Un-
like sequence-independent operators, self-attention consid-
ers pairwise interactions between embeddings and assigns
a unique position to each of the N locations in e. Conse-
quently, directly applying f(eun) fails to capture the struc-
ture of e, generally leading to significant discrepancies in
the output.

To address this, we provide a theoretical derivation of
an efficient method to compute f(e) while preserving the
benefits of token reduction. The key insight is to recon-
struct the self-attention matrix without explicitly expanding
the token sequence. We leverage the linearity of the RoPE
transformation to efficiently simulate the appropriate repe-
titions and the positions of the unique embeddings, signifi-
cantly reducing computational overhead while maintaining
consistency with the full sequence computation.

Let Q = Wqe, K = Wke and V = Wve be the full
query, key and value matrices. Similarly, Qun,Kun and Vun
are the unique queries, keys and values satisfying the map-
ping M defined above. The RoPE Self-Attention similarity
matrix is computed as A = RoPE(Q)RoPE(K)T .

For simplicity, let us consider the case where D = 2,
so that we can write Q = [Q1, Q2] where Q1, Q2 ∈ RN .
We will follow a similar notation for all queries, keys and
values. This allows us to express each query and key as a
complex number i.e. Q[n] = Q1[n] + iQ2[n]. Let θ ∈
[0, 2π)N be the rotation angle associated with each position
for RoPE. For positions n,m ∈ 1, 2, . . . N , the RoPE-based
similarity [36] is defined as:

A[m,n] = Re
(
eiθ[m]Q[m] eiθ[n]K[n]

)
(6)

= Re
(
Q[m]K[n] ei(θ[m]−θ[n])

)
(7)

where x,Re(x) denote the complex conjugate and the real
part of x respectively. This can be expanded as:

A[m,n] = (Q1[m]K1[n] + Q2[m]K2[n]) cos(θ[m] − θ[n])
+ (Q1[m]K2[n] − Q2[m]K1[n]) sin(θ[m] − θ[n])

(8)

We also have the trigonometric identities:

cos(θ[m]–θ[n]) = cos(θ[m]) cos(θ[n]) + sin(θ[m]) sin(θ[n])
sin(θ[m]–θ[n]) = sin(θ[m]) cos(θ[n])− cos(θ[m]) sin(θ[n])

(9)

Let C = diag(cos(θ)), S = diag(sin(θ)). Using Eq 8
& 9, the matrix form for self-attention similarities is:
A = CQK⊤C + SQK⊤S + S(Q×K⊤)C − C(Q×K⊤)S

where QKT = Q1K
T
1 +Q2K

T
2 , Q×K⊤ = Q1K

⊤
2 −Q2K

⊤
1 .

This formulation can be applied to queries and keys of any
dimension D by repeating this for the (D/2) complex num-
bers obtained by dividing the representation into two parts.

Methods Nun/N MFLOPs

Full Attention 576 / 576 1359.0

VTU Attention-low 94 / 576 72.4
VTU Attention-mid 209 / 576 357.8
VTU Attention-high 393 / 576 1265.0

Table 1. Comparison of million floating-point operations per sec-
ond (MFLOPs) between original attention and Virtual Token Un-
merging (VTU) attention. N refers to full sequence length, Nun

refers to unique sequence length after merging. The statistics are
computed with batch size 1, head number 32, and head dimension
128. We use the fvcore package for counting FLOPs.

In practice, a different θ is used for each of the (D/2) com-
ponents.

Using this formulation and the mapping M, we can
rewrite the attention matrix in terms of the unique queries
and keys as:

A = CMQunK
⊤
unM

⊤C + SMQunK
⊤
unM

⊤S

+ SM(Qun ×K⊤
un)M

⊤C − CM(Qun ×K⊤
un)M

⊤S (10)

Observe CM,MTC, SM,MTS are highly sparse, each
with at most N non-zero entries. These matrices can also
be pre-computed and reused across all self-attention lay-
ers. Computing QunK

⊤
un and Qun × K⊤

un incurs an O(N2
un)

cost whereas the each of the other matrix multiplications in
Eq 10 can be efficiently computed using sparse matrix op-
erations in O(NNun). We can then use the attention matrix
to compute the final output of the layer as:

f(e) = smax(
A
√
D

)V = [smax(
A
√
D

)M]Vun

Unfortunately, the output f(e) ∈ RN×D will not neces-
sarily exhibit the same redundancy as e. This in turn means
that the future self-attention layers cannot benefit from the
efficiency of virtual token unmerging. In order to remedy
this, before passing the output to the future layers, we re-
introduce the redundancy by averaging the embeddings in
the positions that were originally equal. We denote this re-
merged output by f ′(eun,M) which can be written as:

f ′(eun,M) = (M⊤M)−1MT f(e)

= (M⊤M)−1MT smax(
A
√
D

)V (11)

While the above averaging operation breaks the exact-
ness of the future operations, we observe empirically (see
Section 4) that this re-merging of tokens, that are known to
be redundant, causes minimal drop in performance.
Overall Efficiency The computation of attention matrix
A incurs a cost of O(N2

unD + NNunD) (due to the D/2
components). Followed by the softmax and sparse matrix
multiplications in Eq 11 which incur a cost of O(N2 +
N2

unD). Therefore, the overall complexity for RoPE Self-
Attention with Virtual Token Unmerging is O(NunND).
For comparison, the full RoPE Self-Attention on a sequence
length of N would be an O(N2D) operation. Therefore, in

Methods # Visual
Tokens

Compression
in Encoder GQA MMB MME

(prcp, all) POPE SQAI SEEDI VQAT MMVet LLaVAW Avg

LLaVA-1.5-7B 576 - 62.0 64.6 1506,1862 86.9 69.4 66.2 58.3 30.7 63.5 55.8

Fixed Length Compression & Training-Required

MQT-LLaVA [14] 256 No 61.6 64.3 1435, - 84.4 67.6 - - 29.8 64.6
Prumerge [34] 32 No - 60.9 1350, - 76.3 68.5 - 56.0 - -
Prumerge++ [34] 144 No - 64.9 1462, - 84.0 68.3 - 57.1 - -
LLaMA-VID [22] 2 No 55.5 - - , - 83.1 68.8 - 49.0 - -
VoCo-LLaMA [20] 1 No 57.0 58.8 1323, - 81.4 65.4 - - - -
TokenPacker [20] 36 No 59.6 62.8 - , - 86.2 - - - 29.6 -
LLaVA-Mini [45] 1 No 60.9 65.6 1466, - 84.4 70.4 - 57.0 36.6 68.9

Fixed Length Compression & Training-Free
Prumerge-no-ft [34] 32 No - - 1250, - 76.2 68.0 - 54.0 - -
FastV [38] 128 No 49.6 56.1 - , 1490 53.4 64.4 - 50.6 26.3 -
PDrop [38] 128 No 56.6 61.4 - , 1713 82.3 69.2 - 55.9 30.8 -
SparseVLM [46] 128 No 57.2 62.3 - , 1721 85.0 67.8 - 55.8 29.0 -

ToMe [3] 94 Yes 57.3 59.7 1357, 1673 86.8 68.9 60.5 53.2 25.6 61.0 52.6
ToMe [3] 209 Yes 59.2 62.4 1418, 1734 87.4 69.2 63.5 54.9 30.9 62.9 54.6
ToMe [3] 393 Yes 59.5 64.1 1454, 1769 86.7 68.4 65.1 55.8 30.8 66.0 55.2

Variable Length Compression & Training-Free
DYMU-low 89±27 Yes 60.8 62.1 1438, 1787 86.3 69.3 65.0 53.1 30.0 62.9 54.5
DYMU-mid 195±47 Yes 61.7 62.8 1483, 1862 86.6 69.2 65.9 55.1 30.9 65.1 55.3
DYMU-high 394±57 Yes 61.9 64.3 1498, 1846 86.8 69.9 66.1 58.0 31.5 64.5 56.0

Table 2. Comparison with state-of-the-art methods for improving efficiency on LLaVA 1.5 [25]. DYMU-low achieves 97.7% of the
original full-length LLaVA baseline’s performance while using only ∼15% of the tokens. Importantly, DYMU is entirely training-free and
generally outperforms previous fixed-length, training-free methods such as [3, 5, 46], while also enabling variable-length outputs.

Methods # Visual
Tokens GQA MMB MME

(prcp, all) POPE SQAI SEEDI VQAT MMVet LLaVAW Avg

LLaVA-1.5-w-SigLIP 576 62.7 65.1 1471, 1770 85.7 68.2 66.7 57.6 30.2 59.8 55.2

ToMe [3] 114 59.3 61.4 1380, 1717 85.1 66.9 61.8 52.1 26.1 57.9 52.4

DYMU-SigLIP-low 90±26 61.3 62.5 1398, 1695 84.9 66.7 64.4 51.8 26.7 58.6 53.1
DYMU-SigLIP-mid 176±43 62.2 63.9 1442, 1744 85.0 67.4 65.2 54.5 26.7 59.5 53.9
DYMU-SigLIP-high 318±57 62.4 65.0 1449, 1765 86.0 67.6 66.0 56.8 29.4 58.3 54.7

Table 3. DYMU demonstrates similar efficacy on a different visual encoder, SigLIP [44]. We obtain the baseline by following the same
training recipe as LLaVA-1.5[25]. DYMU-SigLIP-low achieves 96.2% of the baseline performance while using ∼15% visual tokens.

theory, efficiency improves at least linearly with the num-
ber of redundant tokens in terms of FLOPs. Table 1 shows
the FLOPs comparison for the attention block. In practice,
we find that the wall-clock time difference is marginal due
to PyTorch’s highly optimized attention and dense matrix-
multiplication implementations.

4. Experiments
In this section, we present all the details of our implemen-
tation of the proposed method. We also present a compre-
hensive analysis demonstrating the practical benefits and ef-
ficacy of utilizing DYMU with various VLMs, visual en-
coders and LLM architectures.

4.1. Implementation Details
Dynamic Token Merging For DToMe, we find layer-
wise thresholds using a diverse dataset of 250k images
sampled from the SFT instruction tuning data of LLaVA
1.5 [25] comprising of images from MS-COCO [24], Vi-
sualGenome [17], OCR-VQA [31], TextVQA [35] and
GQA [16]. We also ablate the choice of image datasets in
§4.2. In general, a sufficiently diverse image set suffices,

and performance remains robust to dataset changes. Impor-
tantly, we only use the images to estimate the thresholds (in
inference mode) and do not use the associated annotations
or text in any way.

DYMU variants For each visual encoder in the experi-
ments, including CLIP [33]§ and SigLIP [1, 44]¶||, we find
thresholds for three variants of the encoder by choosing
different average number of tokens to drop (ri) in each
layer. We represent these variants by •-low,•-mid,•-high
corresponding to the expected average number of tokens.
We also explore different VLM backbones including fixed-
resolution models, e.g., LLaVA 1.5 [25] and any-resolution
models, e.g., LLaVA-OneVision [19].

4.2. Quantitative Evaluation

Comparing Visual Token Merging Methods for VLMs
In order to evaluate efficacy of our approach, we compare
against several existing methods that focus on reducing the
number of tokens for VLMs. To the best of our knowl-

§CLIP version: openai/clip-vit-large-patch14-336
¶SigLIP with LLaVA-1.5: timm/ViT-B-16-SigLIP-384
||SIgLIP version with LLaVA-OV: google/siglip-so400m-patch14-384

Methods % Visual
Tokens

Image Benchmarks Video Benchmarks
MMB MME SEED MathVista VidMME MMBVid

LLaVA-ov-7B 100% 79.3 75.8 75.6 58.0 61.3 1.18

ToMe [3] 14.4% 71.2 63.1 68.3 46.6 57.6 1.08

DYMU-ov-low ∼14.4% 73.6 68.0 72.9 47.4 59.3 1.08
DYMU-ov-mid ∼25.1% 76.0 70.3 73.7 51.7 60.1 1.12
DYMU-ov-high ∼46.5% 77.8 73.6 74.2 54.4 60.1 1.16

Table 4. DYMU shows consistent effectiveness on an AnyRes
VLM backbone, LLaVA-OneVision [19]. We additionally show
performance on two comprehensive video understanding bench-
marks, where DYMU-ov-low achieves ∼96.5% of the baseline’s
performance with only ∼14% tokens.

Figure 3. Image Complexity vs Token Count and Accuracy
The scatter plot (left) demonstrates a strong correlation between
DyMU’s token count and image complexity score—more com-
plex images naturally receive more tokens. On the right, MME
accuracy at varying complexity levels is compared between ToMe
(fixed-length) and DyMU (dynamic-length), highlighting the ben-
efit of assigning additional tokens to complex images.

edge, our proposed approach is the first to 1) enable var-
ied number of visual tokens and 2) not require further fine-
tuning of the VLM. Nevertheless, we compare to methods
that are designed to reduce the number of tokens by a fixed
length. In Table 2, we present a quantitative evaluation of
all methods applied to a pre-trained LLaVA 1.5 [25] archi-
tecture on standard VLM benchmarks, including GQA [16],
MMBench [27], MME [11], POPE [21], ScienceQA [28],
SEED-IMG [18], TextVQA [35], MMVet [43], LLaVA-
Bench [25]. DYMU achieves average performances of
97.7%, 99.1%, and 100.4%, relative to the original pre-
trained model, while reducing the token number by 84.5%,
66.1%, and 31.6%, respectively. DYMU also outperforms
previous training-free methods while enabling varied length
output per instance. When decreasing the token number, the
largest drop happens in TextVQA, which fits our expecta-
tion as understanding visual text is highly sensitive to the
spatial location of visual tokens, on which the token merg-
ing tend to break.

Compatibility with Different LLMs and Visual En-
coders DYMU can be seamlessly integrated into mul-
tiple variants of VLMs featuring different LLMs, visual

GQA

MMB

MME
POPE

SQA

SEED

TextVQA
MMVet

LLaVA

57.3 59.7

58.3

61.7
60.1

63.1

84.0

86.0

68.7
70.3

61.3
63.7

52.0

54.0

26.7

29.3

60.0

62.0

ToMe w/o VTU
ToMe w/ VTU
DToMe w/o VTU
DToMe w/ VTU

Figure 4. Importance of Virtual Token Unmerging (VTU). We
ablate the performance of LLaVA 1.5 with two token reduction
methods applied to the visual encoder—ToMe (fixed-length) and
DToMe (variable-length). We observe that applying VTU signif-
icantly improves performance on 8 out of 9 benchmarks, demon-
strating robustness to varied token reduction methods.

20.0

40.0

60.0

80.0

100.0

GQA
M

M
B

M
M

E
POPE

SQA
SEED

VQA

M
M

Vet

LLaV
A

Avg

Threshold Data: LLaVA Threshold Data: Pixmo-Cap

Figure 5. Comparing thresholds using LLaVA Instruct Data
vs Pixmo-Cap. Although both methods use the same per-layer
merging hyperparameter (ri), the Pixmo-based thresholds lead to
fewer tokens (top)—likely due to domain differences. However,
performance across a range of benchmarks shows minimal drop
(bottom), indicating the robustness of our threshold estimation.

encoders, and pretraining strategies. In Tables 2 and 3,
we demonstrate that DYMU effectively maintains baseline
performance when applied both CLIP [33] to SigLIP [44]
representations within the LLaVA 1.5 framework, using a
Vicuna-7B [7] LLM.

Furthermore, in Table 4 we evaluate DYMU on LLaVA-
OneVision [19], a recent Any-Resolution (AnyRes) model
with SigLIP-so400M [1] as visual encoder and Qwen2 [39]
as LLM backbone. AnyRes enables processing images of
arbitrary resolutions by segmenting them into smaller re-
gions and encoding each individually. Our results show
that DYMU remains compatible with this complex opera-
tion, preserving performance while dynamically reducing
token counts. Additionally, we extend our evaluation to
video benchmarks using LLaVA-OneVision. By applying
DYMU to the visual encoder, we achieve a variable reduc-
tion in feature representations per frame while maintaining

Figure 6. Controllable Visual Token Length. By dynamically allocating tokens based on image complexity, DYMU enables direct
control over computational cost. In these examples, we combine DYMU with additional vision tools—background removal, OCR, or
object detection—to focus only on the relevant regions. As a result, token count is substantially reduced without degrading performance,
showcasing the flexibility of DYMU to adapt token usage according to the task’s requirements.

strong performance across benchmarks.

Image Complexity vs Number of Tokens In Figure 3
(left), we show how the number of tokens varies with image
complexity. We quantify image complexity C(I) by com-
puting the JPEG compression ratio, i.e., C(I) = SJPEG(I)

H×W ,
where SJPEG is the size (in bytes) of the image I af-
ter JPEG encoding, and H,W are the original height and
width. For this experiment, we use CLIP-L/14-336 with
DToMe -low to encode images in the MME benchmark. We
observe a strong correlation between the number of output
tokens and image complexity, indicating that DToMe effec-
tively preserves essential details in complex images while
reducing redundancy in simpler ones. We include more
qualitative visualizations in Appendix A.

Fixed vs Dynamic Token Reduction In Figure 3 (right),
we categorize images into three bins based on their com-
plexity scores, and compare the performance of ToMe
(fixed-length token reduction) and DToMe on the MME
benchmark. A key drawback of fixed token reduction is
its inability to adapt to image complexity, leading to over-
compression for complex images and under-compression
for simpler ones. While our method outperforms ToMe
across all complexity levels, we observe the most signifi-
cant gains on complex images, where ToMe struggles due
to an insufficient number of tokens.

Importance of Virtual Token Unmerging VTU effi-
ciently reconstructs the representation of a full visual token
sequence from a reduced set of visual tokens To demon-
strate its impact, we compare LLaVA 1.5 variants with and
without VTU. In the latter, the LLM does not undergo any
modifications and directly receives fewer tokens. In Fig-
ure 4, we evaluate this effect on two token reduction meth-
ods: ToMe [3], which produces fixed-length sequences, and
DToMe (ours). Across both cases, we observe that apply-
ing VTU significantly improves performance on 8 out of 9
benchmarks, demonstrating its effectiveness in preserving

model capabilities despite token reduction.

Impact of Dataset for Threshold Finding The DToMe
thresholds are computed using images from the LLaVA in-
struction tuning dataset. Here, we investigate the sensitivity
of DToMe to the threshold estimation dataset. In Figure 5,
we evaluate DYMU-LLaVA 1.5 with DToMe thresholds
estimated on the Pixmo-Cap [8] image-captioning dataset.
We observe a minimal performance change across all the
benchmarks, highlighting the robustness of our method to
dataset variation. Interestingly, we observe that the thresh-
olds estimated using the Pixmo-Cap dataset lead to fewer
tokens during inference on the benchmarks. We hypothe-
size that this is due to the domain shift between the Pixmo-
Cap images and a more diverse LLaVA-instruct dataset
which covers diverse real-world use cases.

4.3. Qualitative Analysis
Visualizing Variable Visual Token Length DToMe fa-
cilitates producing variable number of token embeddings
for images based on complexity of the content. In Appendix
Figure 7, we visualize the number of visual tokens for var-
ious images from nine benchmarks. For each benchmark,
we present three images corresponding to the minimum,
median, and maximum token numbers output by DYMU-
low. We observe a strong correlation, both within and across
different benchmarks, between image complexity and the
number of tokens retained by DYMU.

Controllable Visual Token Length Dynamic Token
Merging offers a key advantage over fixed token reduction
methods: cost controllability. By dynamically adjusting the
number of visual tokens based on image complexity, users
gain direct control over the computational cost incurred per
image. This flexibility allows flexible combination of vi-
sual reasoning tools with DYMU to further boost efficiency
while maintaining performance. For instance, in Figure 6,
we show example applications of combining DYMU with

additional tools, i.e., background removal [4], OCR [9], and
object detection [30] models, to extract focused regions and
further reduce token count. Unlike existing VLMs, which
impose a fixed token budget per image regardless of con-
tent, our method enables adaptive token allocation, ensuring
that simpler regions consume fewer resources while more
complex regions retain the necessary level of detail.

5. Conclusions and Future Work
In this work, we introduced DYMU, the first training-free
framework that dynamically reduces visual token counts
in VLMs based on per-image complexity. DYMU can be
directly plugged into all mainstream VLMs that comprise
ViT-based visual encoders and RoPE-based LLM back-
bones. Future work includes improving DYMU’s ability
to preserve VLM performance on spatially sensitive tasks
such as TextVQA [35] and spatial reasoning. Additionally,
exploring the extension of DYMU to reduce temporal re-
dundancy in videos is another promising direction.

References
[1] Ibrahim M Alabdulmohsin, Xiaohua Zhai, Alexander

Kolesnikov, and Lucas Beyer. Getting vit in shape: Scaling
laws for compute-optimal model design. Advances in Neural
Information Processing Systems, 36:16406–16425, 2023. 6,
7

[2] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin
Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun
Tang, et al. Qwen2. 5-vl technical report. arXiv preprint
arXiv:2502.13923, 2025. 2

[3] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoffman. To-
ken merging: Your vit but faster. arXiv preprint
arXiv:2210.09461, 2022. 2, 3, 4, 6, 7, 8, 12, 14

[4] Bria AI. RMBG-1.4: Background Removal Model. https:
//huggingface.co/briaai/RMBG-1.4, 2024. 9

[5] Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang
Lin, Chang Zhou, and Baobao Chang. An image is worth 1/2
tokens after layer 2: Plug-and-play inference acceleration for
large vision-language models. In European Conference on
Computer Vision, pages 19–35. Springer, 2024. 2, 6

[6] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedan-
tam, Saurabh Gupta, Piotr Dollár, and C. Lawrence Zitnick.
Microsoft COCO Captions: Data Collection and Evaluation
Server. CoRR, abs/1504.00325, 2015. 1

[7] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao
Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao
Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing.
Vicuna: An Open-Source Chatbot Impressing GPT-4 with
90%* ChatGPT Quality, 2023. 7

[8] Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tri-
pathi, Yue Yang, Jae Sung Park, Mohammadreza Salehi,
Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo
and pixmo: Open weights and open data for state-of-the-art

multimodal models. arXiv preprint arXiv:2409.17146, 2024.
8

[9] Felix Dittrich. Onnxtr: Optical character recognition
made seamless & accessible to anyone, powered by
onnx. https://github.com/felixdittrich92/
OnnxTR, 2024. 9

[10] W. N. Francis and H. Kucera. Brown corpus manual. Tech-
nical report, Department of Linguistics, Brown University,
Providence, Rhode Island, US, 1979. 2

[11] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,
Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jinrui Yang,
Xiawu Zheng, Ke Li, Xing Sun, and Rongrong Ji. MME:
A Comprehensive Evaluation Benchmark for Multimodal
Large Language Models. arXiv prepring arXiv:2306.13394,
2023. 2, 7

[12] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Ba-
tra, and Devi Parikh. Making the V in VQA Matter: Ele-
vating the Role of Image Understanding in Visual Question
Answering. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 1

[13] Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS:
A dataset for large vocabulary instance segmentation. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019. 1

[14] Wenbo Hu, Zi-Yi Dou, Liunian Harold Li, Amita Kamath,
Nanyun Peng, and Kai-Wei Chang. Matryoshka query trans-
former for large vision-language models. arXiv preprint
arXiv:2405.19315, 2024. 2, 6

[15] Wenxuan Huang, Zijie Zhai, Yunhang Shen, Shaoshen Cao,
Fei Zhao, Xiangfeng Xu, Zheyu Ye, and Shaohui Lin.
Dynamic-llava: Efficient multimodal large language models
via dynamic vision-language context sparsification. arXiv
preprint arXiv:2412.00876, 2024. 2

[16] Drew A Hudson and Christopher D Manning. Gqa: A
new dataset for real-world visual reasoning and composi-
tional question answering. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 6700–6709, 2019. 6, 7

[17] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and
Li Fei-Fei. Visual Genome: Connecting Language and Vi-
sion Using Crowdsourced Dense Image Annotations. Int. J.
Comput. Vis., 123(1):32–73, 2017. 6

[18] Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-
iao Ge, and Ying Shan. SEED-Bench: Benchmarking
Multimodal LLMs with Generative Comprehension. arXiv
prepring arXiv:2307.16125, 2023. 7

[19] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng
Li, Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei Liu, and
Chunyuan Li. Llava-onevision: Easy visual task transfer.
arXiv preprint arXiv:2408.03326, 2024. 2, 4, 6, 7

[20] Wentong Li, Yuqian Yuan, Jian Liu, Dongqi Tang, Song
Wang, Jie Qin, Jianke Zhu, and Lei Zhang. Tokenpacker:
Efficient visual projector for multimodal llm. arXiv preprint
arXiv:2407.02392, 2024. 2, 6

https://huggingface.co/briaai/RMBG-1.4
https://huggingface.co/briaai/RMBG-1.4
https://github.com/felixdittrich92/OnnxTR
https://github.com/felixdittrich92/OnnxTR

[21] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin
Zhao, and Ji-Rong Wen. Evaluating object hallucina-
tion in large vision-language models. arXiv preprint
arXiv:2305.10355, 2023. 7

[22] Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid:
An image is worth 2 tokens in large language models. In
European Conference on Computer Vision, pages 323–340.
Springer, 2024. 2, 6

[23] Xiaoyu Liang, Chaofeng Guan, Jiaying Lu, Huiyao Chen,
Huan Wang, and Haoji Hu. Dynamic token reduction dur-
ing generation for vision language models. arXiv preprint
arXiv:2501.14204, 2025. 2

[24] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: Common Objects in
Context. In Computer Vision - ECCV 2014 - 13th European
Conference, 2014. 6

[25] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee.
Improved Baselines with Visual Instruction Tuning. arXiv
prepring arXiv:2310.03744, 2023. 6, 7

[26] Xiangcheng Liu, Tianyi Wu, and Guodong Guo. Adaptive
sparse vit: Towards learnable adaptive token pruning by fully
exploiting self-attention. arXiv preprint arXiv:2209.13802,
2022. 2

[27] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang
Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He,
Ziwei Liu, Kai Chen, and Dahua Lin. MMBench: Is Your
Multi-modal Model an All-around Player? arXiv prepring
arXiv:2307.06281, 2023. 7

[28] Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei
Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and
Ashwin Kalyan. Learn to explain: Multimodal reasoning
via thought chains for science question answering. In The
36th Conference on Neural Information Processing Systems
(NeurIPS), 2022. 7, 12

[29] Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan,
Anish Prabhu, Mohammad Rastegari, and Oncel Tuzel.
Token pooling in vision transformers. arXiv preprint
arXiv:2110.03860, 2021. 2

[30] Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim
Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh
Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran
Shen, et al. Simple open-vocabulary object detection. In
European conference on computer vision, pages 728–755.
Springer, 2022. 9

[31] Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and
Anirban Chakraborty. Ocr-vqa: Visual question answering
by reading text in images. In ICDAR, 2019. 1, 6

[32] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mah-
moud Assran, Nicolas Ballas, Wojciech Galuba, Rus-
sell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
Michael G. Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu
Xu, Hervé Jégou, Julien Mairal, Patrick Labatut, Armand
Joulin, and Piotr Bojanowski. DINOv2: Learning Ro-
bust Visual Features without Supervision. arXiv prepring
arXiv:2304.07193, 2023. 3

[33] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning Transferable Visual
Models From Natural Language Supervision. In Proceedings
of the 38th International Conference on Machine Learning
(ICML), 2021. 2, 3, 6, 7

[34] Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan
Yan. Llava-prumerge: Adaptive token reduction for efficient
large multimodal models. arXiv preprint arXiv:2403.15388,
2024. 2, 6

[35] Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang,
Xinlei Chen, Devi Parikh, and Marcus Rohrbach. Towards
vqa models that can read. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 8317–8326, 2019. 6, 7, 9

[36] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen
Bo, and Yunfeng Liu. Roformer: Enhanced transformer with
rotary position embedding. Neurocomputing, 568:127063,
2024. 2, 4, 5

[37] Xinjian Wu, Fanhu Zeng, Xiudong Wang, and Xinghao
Chen. Ppt: Token pruning and pooling for efficient vision
transformers. arXiv preprint arXiv:2310.01812, 2023. 2

[38] Long Xing, Qidong Huang, Xiaoyi Dong, Jiajie Lu, Pan
Zhang, Yuhang Zang, Yuhang Cao, Conghui He, Jiaqi Wang,
Feng Wu, et al. Pyramiddrop: Accelerating your large
vision-language models via pyramid visual redundancy re-
duction. arXiv preprint arXiv:2410.17247, 2024. 2, 6

[39] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen
Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng
Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin,
Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jian-
wei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou,
Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu,
Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei
Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji
Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tian-
hao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu
Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024.
7

[40] Xubing Ye, Yukang Gan, Yixiao Ge, Xiao-Ping Zhang, and
Yansong Tang. Atp-llava: Adaptive token pruning for large
vision language models. arXiv preprint arXiv:2412.00447,
2024. 2

[41] Xubing Ye, Yukang Gan, Xiaoke Huang, Yixiao Ge, Ying
Shan, and Yansong Tang. Voco-llama: Towards vision
compression with large language models. arXiv preprint
arXiv:2406.12275, 2024. 2

[42] Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya,
Jan Kautz, and Pavlo Molchanov. A-vit: Adaptive to-
kens for efficient vision transformer. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10809–10818, 2022. 2

[43] Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan Wang.

MM-Vet: Evaluating Large Multimodal Models for Inte-
grated Capabilities. arXiv prepring arXiv:2308.02490, 2023.
7

[44] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and
Lucas Beyer. Sigmoid loss for language image pre-training.
In Proceedings of the IEEE/CVF international conference on
computer vision, pages 11975–11986, 2023. 3, 6, 7

[45] Shaolei Zhang, Qingkai Fang, Zhe Yang, and Yang
Feng. Llava-mini: Efficient image and video large mul-
timodal models with one vision token. arXiv preprint
arXiv:2501.03895, 2025. 2, 6

[46] Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng,
Tao Huang, Kuan Cheng, Denis Gudovskiy, Tomoyuki
Okuno, Yohei Nakata, Kurt Keutzer, et al. Sparsevlm: Vi-
sual token sparsification for efficient vision-language model
inference. arXiv preprint arXiv:2410.04417, 2024. 2, 6

A. Visualization of Variable Token Length
In Figure 7, we present a comprehensive visualization of ex-
ample images along with their encoded visual token counts.
We use DYMU-low (based on CLIP-L/14-336) as the en-
coder, where the full token length is 576. Three images are
shown for each benchmark, corresponding to the minimum,
median, and maximum number of tokens, respectively. A
clear correlation can be observed between semantic rich-
ness and token count. We also note variations in the to-
ken range across different benchmarks. For instance, Sci-
enceQA [28], which primarily contains figures and charts,
tends to have fewer tokens than benchmarks featuring com-
plex real-world scenes.

B. Impact of Token Merging Schedule
We conduct an additional ablation study on one of the hy-
perparameters in DToMe, the merging schedule, during
threshold finding. As detailed in Section 3, we set a target
reduction number, ri , for each layer. By default, ri is set
to a constant value across all layers. Alternatively, we can
vary ri across layers to encourage merging more or fewer
tokens at different depths.

In Table 5, we present an ablation study on two alter-
native scheduling strategies: (1) linear, which merges more
tokens in earlier layers and fewer tokens in later layers, and
(2) reverse linear, which follows the opposite trend. The
results indicate that merging fewer tokens in earlier layers
tends to yield better performance, while the constant sched-
ule provides a balanced trade-off between performance and
token count. This observation echoes the findings in the
ToMe paper [3], where a constant schedule was found to be
nearly optimal.

C. Full Results for Figure 4
We present the complete results of the ablation experiments
on the effect of our proposed Virtual Token Unmerging, as
shown in Figure 4. The results are provided in Table 6.

D. Full Results for Figure 5
We present the complete results of the ablation experiments
on threshold-finding datasets, as shown in Figure 5. The
results are provided in Table 7.

G
Q

A

#Token: 31 #Token: 108 #Token: 200

LL
aV

A
 B

en
ch

#Token: 35
#Token: 86 #Token: 132

M
M

B
en

ch

#Token: 5
#Token: 71

#Token: 221

M
M

E

#Token: 9

#Token: 91 #Token: 211

M
M

Ve
t

#Token: 33 #Token: 79 #Token: 151
PO

PE
#Token: 23 #Token: 106 #Token: 220

SE
ED

#Token: 15
#Token: 102 #Token: 225

Sc
ie

nc
eQ

A

#Token: 9 #Token: 50
#Token: 163

Te
xt

V
Q

A

#Token: 23 #Token: 100 #Token: 233

Figure 7. DToMe Token Count Across Benchmarks. For each dataset, we show three examples processed by our method—those yielding
the fewest tokens, the median number of tokens, and the most tokens. Observe that visually simple or nearly blank images consistently
require fewer tokens, while more detailed, semantically complex or cluttered images produce more tokens. This demonstrates how DToMe
effectively adapts to image complexity across diverse benchmarks, allocating fewer tokens to simpler content and preserving more tokens
for complex scenes.

Schedule # Visual
Tokens GQA MMB MME(prcp,all) POPE SQAI SEEDI VQAT MMVet LLaVAW Avg

Constant 195±47 61.7 62.8 1483, 1862 86.6 69.2 65.9 55.1 30.9 65.1 55.3
Linear 163±43 61.3 62.3 1437, 1767 86.2 69.4 65.3 52.1 28.8 58.6 53.8
Reverse Linear 213±49 61.8 63.8 1491, 1863 86.7 69.3 66.0 57.5 31.8 65.3 55.9

Table 5. Ablation study on merging schedules in DToMe. We compare three strategies: constant, linear (more merging in early layers),
and reverse linear (more merging in later layers). Results show that merging fewer tokens in early layers yields better performance, while
the constant schedule provides a balanced trade-off between performance and token count.

Method # Visual
Tokens GQA MMB MME(prcp,all) POPE SQAI SEEDI VQAT MMVet LLaVAW Avg

ToMe [3] 94 57.3 59.7 1357, 1673 86.8 68.9 60.5 53.2 25.6 61.0 52.6
+ VTU 94 60.6 63.7 1464, 1815 85.4 69.1 64.9 54.8 28.7 62.5 54.5

DYMU-low 89±27 60.8 62.1 1438, 1787 86.3 69.3 65.0 53.1 30.0 62.9 54.5
w/o VTU 89±27 58.2 56.0 1346, 1639 86.9 67.7 60.9 51.3 25.2 58.8 51.7

Table 6. Impact of Virtual Token Unmerging. Full results for Figure 4.

Model Thresh Finding
Dataset

Visual
Tokens GQA MMB MME(prcp,all) POPE SQAI SEEDI VQAT MMVet LLaVAW Avg

DYMU-mid Llava 195±47 61.7 62.8 1483, 1862 86.6 69.2 65.9 55.1 30.9 65.1 55.3
DYMU-mid Pixmo 120±30 61.1 64.4 1474, 1808 86.0 69.4 65.3 56.2 30.5 63.7 55.2

Table 7. Impact of dataset for threshold finding. Full results for Figure 5.

	Introduction
	Related Work
	Method
	Dynamic Token Merging (DToMe)
	Virtual Token Unmerging (VTU)

	Experiments
	Implementation Details
	Quantitative Evaluation
	Qualitative Analysis

	Conclusions and Future Work
	Visualization of Variable Token Length
	Impact of Token Merging Schedule
	Full Results for Figure 4
	Full Results for Figure 5

